Int. J. of Comp. & Info. Tech., (2017) 5(1): 53-58.

ISBN: 2345-3877
Www.ijocit.org
Volume 5, Issue 1

Original Research

A Novel Method to Improve Query in Big
Databases Using a Geometric Tree Base
Algorithm

Ameneh Eskandari *
Zahra Nilforoushan **
Javad Ranjbar?

Received: 30 Nov 2016
Accepted: 08 Jan 2017

Copyright © The Author(s). All Rights Reserved.

Abstract

Nowadays many daily jobs could be done via virtual network as the world of IT and electronics has dramatically
expanded. The increase in the number of users of big databases would demand a serious need in storing the
information about these users and in particular search in such databases. For example in an identification
authentication system, we need to compare a single fingerprint with many known fingerprints. Now if this
database is big, the search will be time consuming and the fast methods would be essential. One of the methods
for reducing search time is tree structures. In this paper, a new geometric method for search in big databases is
proposed where we first construct the search tree and by removing certain branches, we obtain the desired output
result. This approach has been compared with KD-Tree and the implementation results have shown that the
proposed method is 100 times faster in the search time.

Keywords: Database, query, KD-Tree, split tree, KNN.
@ @ Citation: Eskandari, A., Nilforoushan, Z., Ranjbar, J., (2017). A Novel Method to Improve Query in
Big Databases Using a Geometric Tree Base Algorithm, Int. J. of Comp. & Info. Tech. (IJOCIT),
BY SA .
5(1): 53-58.
Department of Electrical and Computer Engineering, Kharazmi University

Department of Electrical and Computer Engineering, Yazd University
Corresponding Author: nilforoushan@khu.ac.ir

53

=skandari, A., Nilforoushan, Z., Ranjbar, J.

Introduction

At the first glance, it seems that geometry has no
application in database structures but one can interpret
a database geometrically. More precisely, records and
information in database are considered as points. For
example consider a database of personnel of a
company. If we want to know the personnel whose
ages are between 1980 to 1985 and whose salaries are
in the range 1000 to 2000 dollars, this search is called
range query [1]. Another example is a police station
containing thousands of fingerprints. For identification
of a certain person, we need to search in the database
for the fingerprint of the person by searching through
all fingerprints. This search is called exact query [1]. If
the number of points in the database is too large, the
search will be very time consuming. One approach to
reduce the search time is using the search trees.

Salary
O o
O O
20008 fovevena-n O.. o
o) o © (o)
o %lool°
10008 fevsvemenannann ! o
o ©0 ©Oio
i O
A Date of Birth
1980 1985

Figure 1: interpreting a data base query geometrically [5]

2. KD-Tree

In this section the problem of 2D-rectangular
searching is considered which is mostly used in many
problems [2]. Let P be the set of points in the plane.
The basic assumption is that no two points have the
same x-coordinate, and no two points have the same y-
coordinate. A 2-D rectangular range query on P asks
for the points from P lying inside the query rectangle
[x,x'] % [v,v']. A point p :==(p,,p,) lies inside
this rectangle if and only if;

P, € [x,x]and p,. € [v, 1]

The set of (1-D) points is split into two subsets of
roughly equal size, one subset contains the point smaller

than or equal to splitting value, and the other contains the
points larger than splitting value. The splitting value is
stored at the root and the two subsets are stored
recursively in two subtrees. Each point has its x-
coordinate and y-coordinate. Therefore, we first split on
x-coordinate and then on y-coordinate, then againon x-
coordinate, and so on. At the root we split the set P with
vertical line L into two subsets of roughly equal size.
This is done by finding the median x- coordinate of the
points and drawing the wvertical line through it. The
splitting line is stored at the root. P, the subset of
points to left is stored in the left subtree, and Py , the
subset of points to right is stored in the right subtree. At
the left child of the root, we split the Ppgs into two
subsets with a horizontal line. This is done by finding the
median y-coordinate if the points are in P . The points
below or on it are stored in the left subtree, and the
points above are stored in right subtree. The left child
itself stores the splitting line. Similarly Py is split with a
horizontal line, which is stored in the left and right
subtree of the right child. At the grandchildren of the
root, we split again with a vertical line. In general,
vertical lines separate the nodes with even depth while
the horizontal ones separate the nodes with odd depth

[2].

Figure 2: KD-Tree (a) the way the plane is divided
(b) corresponding binary tree [2]

54

2.1. Algorithm of KD-Tree

Int. J. of Comp. & Info. Tech., (2017) 5(1): 53-58.

i

Take a set of points P and
the current depth d

Split P into two subsets with a
vertical line L through the median x-
coordinate of the pointsin P

P contains
only one
point?

Set a leaf storing this point

If the total
number of
leafs are
the same
asp

Split P into two subsets with a
horizontal line | through the
median y-coordinate of the points
inP

Let P: be the set of
points above L

(Points of
P)<L

Let P:be the set of (Points of Y Let P1 be the set of
points to the right of L Pj<L points to the left of L
oronl
ded+1

de-d+1

Let P1 be the set of points
to the below of Loron L

Figure 3: Flow chart of KD-Tree algorithm

In this approach which is very similar to the binary
KD-Tree, at first the bounding box is determined. Then
width and height of the obtained rectangular is
computed and divided into half from the larger side. If
the larger side is in the direction of x-axis (y-axis), we
will divide the rectangle into half by a vertical
(horizontal) line and the left and right (up and down),
and the points will make left and right subtrees. If the
larger side is in the direction of y-axis, we will divide
the rectangle into half by a horizontal line and the up
and down points will make left and right subtrees.
Then, this process will continue recursively [3].

(a

)

(b)

Figure 4: Split -Tree (a) the way the plane is divided (b)
corresponding binary tree

55

=skandari, A., Nilforoushan, Z., Ranjbar, J.

2.2. Split Tree Algorithm

Figure 4 (a) & (b) show this algorithm:

Split P into two subsets with a
vertical line u through the

median x-c of the

Take a set of points P

P contains
only one
point?

Draw the bounding box of

points in P

If the total
number of
leafs are
the same
asP

Set a leaf storing this point

Split P into two subsets with a
horizontal line v through the
median y-coordinate of the
points in P

Let P2 be the set of Y
points to the right of u

(Points
of P)<u

Let P1 be the set of
points to the left of u
oronu

points above v

Let P2 be the set of

Y (Points
of P)<v

Let P1 be the set of
points to the below of
voronv

z

Figure 5: Flow chart of Split-Tree algorithm

3. The proposed method

In this paper both range query and exact query

methods are considered where we apply the

KNN-

method by k value taken from user for the first and k=1

for the second method. The search method will not ¢
construct the whole tree in the memory and only the .
branch which has the output point would be .

constructed. As a result the search process will be
more efficient. The pseudo code of our proposed

algorithm is in the following:

Input: set of P point and the point D.

Output: The specified arm of the tree that includes K. .

o Until the number of set P is k do(k for KNN)

o find bounding box of P

o If the larger side of the rectangular is in x-

dimension

Then find the median of the x-dimension side
(m_X)

If x-dimension of D is less than m_X

Find the point in the left side of m_X (P_LEFT)
else the point in the right side of m_X
(P_RIGHT)

Else find the median of the y-dimension side
(m_Y)

If y-dimension of D is less than m_X

Find point in the left side of m_Y (P_LEFT)
else find the point in the right side of m_Y
(P_RIGHT)

Return to 1.

56

3.1 Implementation results

Our implementation has been done in MATLAB
using a laptop with 4GB of RAM and DUAL CORE
3.4 GHz CPU over windows 7 operating system. In
figure 6 , at first the range search with KNN with k=5
in a database of 1000 points is done and at the second
phase one of these points would be chosen as a test
point and the exact search with KNN with k=1 is
applied (figure 7).

Int. J. of Comp. & Info. Tech., (2017) 5(1): 53-58.

In order to show the performance of this
algorithm we compare it with KD-Tree.

We repeat the search process for similar database
but with different points and the elapsed time of each
method is shown in table 1.

Table 1: Numerical comparison of elapsed time in proposed
method and KD-Tree in database query

E.Iapsgd Elapsed E.IapSFed .
Number time in time in Number | time in FTIapsed time
of points proposed KD-Tree gf proposed | in KD-Tree
method ©) points method (s)
O] O]

20 0.000582 |0.004667| 520 | 0.001212 | 0.09222
40 0.000551 |0.008884| 540 | 0.001035 | 0.096011
60 0.000475 |0.015554| 560 | 0.001091 0.1052

80 0.000465 |0.016003| 580 | 0.001095 | 0.106841
100 0.000534 |0.019479| 600 | 0.001139 | 0.109288
120 0.000701 |0.022158| 620 | 0.001096 | 0.117218
140 0.000536 |0.026929| 640 | 0.001002 | 0.118015
160 0.000488 |0.030524| 660 | 0.001014 | 0.122392
180 0.000584 |0.035514| 680 | 0.000967 | 0.127769
200 0.000692 |0.042037| 700 | 0.000958 | 0.13209
220 0.000553 |0.041129| 720 | 0.000963 | 0.13394
240 0.000578 |0.044308| 740 | 0.001096 | 0.137489
260 0.000666 |0.046428| 760 | 0.001243 | 0.141615
280 0.000643 |0.052551| 780 | 0.001149 | 0.144513
300 0.000735 |0.056387| 800 | 0.001019 | 0.148844
320 0.000632 |0.060729| 820 | 0.001155 | 0.151518
340 0.000843 |0.064485| 840 | 0.001101 | 0.164905
360 0.000749 | 0.07092 | 860 | 0.001203 | 0.158842
380 0.000815 |0.071647| 880 | 0.001152 | 0.158924
400 0.000882 |0.076666| 900 | 0.001223 | 0.162881
420 0.000909 |0.078128| 920 0.0012 0.165303
440 0.001004 |0.080135| 940 | 0.001371 | 0.167491
460 0.00083 |0.083748| 960 | 0.001488 | 0.169391
480 0.000926 |0.088798| 980 | 0.001089 | 0.172748
500 0.000933 |0.088698| 1000 | 0.001296 | 0.17319

In figure 8 it is seen that the speed of search has

been dramatically

increased.

In order

to better

understanding the numerical difference between two
algorithms, both run times of the two algorithms are

Figure 7: Exact query in proposed method with k=1

presented. As a conclusion we can say that the speed of
proposed method is at least 104 times faster than that
of in the KD-Tree.

57

=skandari, A., Nilforoushan, Z., Ranjbar, J.

comparison of Proposed method vs Kd-Tree

0.18

—— Proposed method -
016 | —*— Kd-Tree -

0141

0121

01f

second

0.08

0.06

0.04+

0.02

ada Aada o aag. kbbbt

00 100 200 300 400 500 600 700 800 900 1000
number of points

Figure 8: Comparison of elapsed time in proposed method
vs. KD-Tree

4., Conclusion

In this paper a new geometric algorithm for search
in big databases is proposed. We applied the algorithm
for range and exact query in a database. In order to
show the efficiency of our algorithm, we compared it
with the KD-Tree. The simulation results show the
efficiency of our algorithm and reduction of searching
time which is about 104 times faster of it.

References

[1] Shivangi Surati; Devesh C Jinwala; Sanjay Garg, (2014). "A
Peer-to-Peer multi way tree network with efficient range
query search using multidimensional indexing ", Fourth
International Conference on Digital Information and
Communication Technology and its Applications
(DICTAP), pp: 1-6.

[2] Vandana Dixit K., Deepti Singh, Parul Raj, M. Swathi and
P. Gupta, (2008). "kd-tree Based Fingerprint identification
System”, 2008 2nd International Conference on Anti-
counterfeiting, Security and identification, pp: 5-10.

[3] Narasimhan, Giri; Smid, Michiel, (2007). Geometric
Spanner Networks, Cambridge University Press, ISBN 0-
521-81513-4., pp: 155 — 163.

[4] Hyeong-1l Kim1 and Jae_woo Chang, (2013). “K-Nearest
Neighbor Query Processing Algorithms for a Query Region
inside the Road Networks,” Journal of Computer Science
and Technology, Vol. 28, no. 4, pp. 585-596.

[5] Hemant M. Kakde, (2005). " Range Searching using KD-
Tree", from the citeseerx database on the World Wide Web:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12
2.5818.

Authors Profile

Ameneh Eskandari

is a MSc student of Computer
Science, in Kharazmi
University, Tehran, Iran from
2014. Her research interests are
Computational Geometry and
Computer Graphics. Email:
eskandari@gmail.com

Zahra Nilforoushan received
her MSc in Pure Mathematics-
Algebraic Geometry and PhD in
Computer Science -
Computational Geometry from
Amir kabir University of
Technology, Tehran, Iran in
2003 and 2009 respectively.
She served as a lecturer at Dept.
of Computer Science, Faculty of Mathematical
Sciences and Computer, Kharazmi University,
Tehran, Iran from 2009 to 2011. Since 2012 she is
with Dept. of Electrical and Computer Engineering,
Faculty of Engineering at Kharazmi University as an
Assistant Professor. Her research interests are
Computational Geometry, Computer Graphics,
Computer Vision, Differential Geometry, and
Robotics. Email: nilforoushan@khu.ac.ir

Javad Ranjbar; received his
MSc in communication
engineering from Amir kabir
University of Technology,
Tehran, Iran in 2010 and is a
PhD student in communication-
wireless system in Yazd
university, Yazd, Iran from
2013. His research interests are wireless systems,
WSN, and pattern recognition. Email:
jranjbar@yahoo.com

58

